Journal of Computer Chemistry, Japan [No.2015-0038] Published online by J-STAGE
<Title:> 積分で定義される関数の高精度数値計算法:量子力学の数値解析から数学・数値解析へのフィードバック
<Author(s):> 石川 英明
<Corresponding author E-Mill:> UHI91261(at)nifty.com<Abstract:> We applied a method for calculating indefinite integrals developed for atomic structure calculations to mathematical functions defined by integrals and obtained highly accurate results. The method is simple and has wide applicability. Examples of application are, elementary transcendental functions such as exponential, logarithmic, and arctangent functions, then error function, Fresnel integrals, exponential, cosine, and sine integrals, and incomplete gamma functions.
<Keywords:> method, numerical calculation, integral, mathematical functions, high accuracy
<URL:> https://www.jstage.jst.go.jp/article/jccj/14/3/14_2015-0038/_article/-char/ja/
<Title:> 積分で定義される関数の高精度数値計算法:量子力学の数値解析から数学・数値解析へのフィードバック
<Author(s):> 石川 英明
<Corresponding author E-Mill:> UHI91261(at)nifty.com<Abstract:> We applied a method for calculating indefinite integrals developed for atomic structure calculations to mathematical functions defined by integrals and obtained highly accurate results. The method is simple and has wide applicability. Examples of application are, elementary transcendental functions such as exponential, logarithmic, and arctangent functions, then error function, Fresnel integrals, exponential, cosine, and sine integrals, and incomplete gamma functions.
<Keywords:> method, numerical calculation, integral, mathematical functions, high accuracy
<URL:> https://www.jstage.jst.go.jp/article/jccj/14/3/14_2015-0038/_article/-char/ja/