フタロシアニン フラーレン系における電子物性評価 [Published online J. Comput. Chem. Jpn., 15, 235-238, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 235-238, by J-STAGE]
<Title:> フタロシアニン フラーレン系における電子物性評価
<Author(s):> 光井 和輝, 池永 祐乙, 成島 和男, 高 緑
<Corresponding author E-Mill:> narushim(at)ube-k.ac.jp
<Abstract:> Recently, studies of solar cells have been conducted actively. Especially, organic thin film solar cells are attracting attention for use as a next-generation flexible substrate material. The reasons include the recent advent of bulk heterojunction structures. Nevertheless, bulk heterojunction solar cells exhibit only about 10% conversion efficiency. They have remained in the study phase. One reason for their low conversion efficiency is that a bulk heterojunction conductive mechanism is so complicated that its fundamental electronic properties have not been elucidated well. This letter describes an examination of the excited state of the bulk heterojunction structure and evaluates its electronic properties. Charge densities are computed for excited and ground states. Then absorbance is computed and examined. Results suggest that the electronically excited state might come to differ from the electronic ground state in a phthalocyanine fullerene bimolecular system. Moreover, we infer that this behavior brings about energy level change and subsequent variation in absorbance.
<Keywords:> Bulk Hetero Junction, Organic thin Film Solar Cell, Molecular Orbital Method, Density Functional Method, Charge Density, Absorbance
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0065/_article/-char/ja/

Special Contribution to The Quantum Hydrogen Issue of Journal of Computer Chemistry, Japan [Published online J. Comput. Chem. Jpn., 15, A52-A54, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, A52-A54, by J-STAGE]
<Title:> Special Contribution to The Quantum Hydrogen Issue of Journal of Computer Chemistry, Japan
<Author(s):> Yasuyuki ISHIKAWA
<Corresponding author E-Mill:> yasuyukiishikawa1(at)gmail.com
<Abstract:>
<Keywords:>
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/5/15_Special_Contribution_15_5/_article/-char/ja/

Investigation of a Virtual Nested Two-dimensional Lattice Model for Representing the Diffusive Motion of a Transmembrane Protein in Cell Membrane [Published online J. Comput. Chem. Jpn., 15, 229-231, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 229-231, by J-STAGE]
<Title:> Investigation of a Virtual Nested Two-dimensional Lattice Model for Representing the Diffusive Motion of a Transmembrane Protein in Cell Membrane
<Author(s):> Atsushi OKUMOTO, Tomonari SUMI, Hideo SEKINO, Hitoshi GOTO
<Corresponding author E-Mill:> gotoh(at)tut.jp
<Abstract:> As a refinement of the fluid mosaic model for explaining cell membrane functions, membrane-skeleton fence model and anchored membrane protein picket model have been proposed according to the tracing experiment of a single molecule in plasma membrane. In addition, the experimental observation that the diffusive motion of a transmembrane protein in plasma membrane leads to a normal diffusion through two-step relaxation has suggested that there are two types of nested compartments, large and small. In this paper, we propose a virtual nested two-dimensional lattice model that can express a nested compartment structure of plasma membrane using three parameters in order to represent such a single molecule diffusion movement. Using this 2D lattice model, various diffusive motion simulations of one particle random walks were performed and their trajectories were analyzed by Detrended fluctuation analysis. As a result, we have confirmed that both plasma membrane models, “fence” and “picket,” can be represented by our virtual nested 2D lattice model.
<Keywords:> Transmembrane protein, Plasma membrane, Diffusion movement, Random walk, Detrended fluctuation analysis
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0069/_article/-char/ja/

計算化学による生体分子の結合,運搬,代謝の機構解明 [Published online J. Comput. Chem. Jpn., 15, 232-233, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 232-233, by J-STAGE]
<Title:> 計算化学による生体分子の結合,運搬,代謝の機構解明
<Author(s):> 河野 雅弘, 畠山 望, 蒲池 利章, 宮本 明
<Corresponding author E-Mill:> kohno.m.aa(at)m.titech.ac.jp
<Abstract:> The existence of an energy field that dominates the physiological mechanism of incorporating O2 in the atmosphere into the human body and excreting it outside the body as CO2 was investigated using computational chemistry techniques based on quantum theory. As a result, it was revealed that the binding, transportation, and metabolism of gas molecules depend on the weak magnetic energy induced by the earth’s magnetic field (H0 = 4.5 × 10-5 T). Finally, it was concluded that the mechanism of oxygen transport and Christian Bohr’s proposed”Bohr effect” depend on magnetic coupling between biomolecules.
<Keywords:> Magnetic resonance, Hemoglobin, Myoglobin, Oxygen, Carbon dioxide
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0059/_article/-char/ja/

スマートフォンを用いたSPM可視化アプリケーションの開発 [Published online J. Comput. Chem. Jpn., 15, 227-228, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 227-228, by J-STAGE]
<Title:> スマートフォンを用いたSPM可視化アプリケーションの開発
<Author(s):> 八木 徹, 神部 順子, 長嶋 雲兵, 青山 智夫
<Abstract:> A smartphone application for observating atmospheric state and visualizing suspended particle matter (SPM) was developed. By using the ratio of B/R, G/R and B/G, it was confirmed that the nonlinearity in the developed image can be canceled and the distribution of scattered light in the atmosphere can be observed.
<Keywords:> SPM, Smartphone application, Visualization, Scattered light, Air polution
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0063/_article/-char/ja/

電荷移動錯体の引力の原因:キノン類とベンゼンの分子間相互作用の解析 [Published online J. Comput. Chem. Jpn., 15, 223-224, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 223-224, by J-STAGE]
<Title:> 電荷移動錯体の引力の原因:キノン類とベンゼンの分子間相互作用の解析
<Author(s):> 都築 誠二, 内丸 忠文, 小野 泰蔵
<Abstract:> Aromatic molecules form stable charge-transfer complexes with quinones, tetracyanoethylene or halogen molecules. The charge-transfer interaction (orbital-orbital interaction) was believed to be the source of the attraction in the complexes. However, the contributions of other intermolecular interactions (dispersion, electrostatic etc.) to the attraction in the complexes are not well understood. The total interaction energy and contributions of electrostatic, induction, dispersion and orbital-orbital (exchange-repulsion and charge-transfer) interactions in the benzene-p-benzoquinone complex were studied by ab initio molecular orbital calculations. The analysis shows that the dispersion interaction is the major source of the attraction in the complex and that the orbital-orbital interaction is not attractive but even repulsive.
<Keywords:>
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0064/_article/-char/ja/

マルチスケール計算化学に基づく汚れ付着シミュレーション技術の開発 [Published online J. Comput. Chem. Jpn., 15, 221-222, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 221-222, by J-STAGE]
<Title:> マルチスケール計算化学に基づく汚れ付着シミュレーション技術の開発
<Author(s):> 畠山 望, 長山 千恵子, 畑 北斗, 石澤 由紀江, 佐藤 亮, ボノー パトリック, 三浦 隆治, 鈴木 愛, 宮本 明
<Corresponding author E-Mill:> hatakeyama(at)aki.niche.tohoku.ac.jp
<Abstract:> Plumbing stains grow up from invisible attachment of urea and urolith in the molecular level to biofilms in which bacteria adsorb such nutrients and secrete extracellular polymer substances. In order to understand and control such biofilm growth, we have developed a multiscale simulation that can analyze from adhesion of stains on the molecular scale to accumulation of biofilm on actual scale. In the present study, the biofilm growth and peeling by shear flow was successfully simulated for the condition of typical toilet use.
<Keywords:> Biofilm, Extracellular Polymer Substances (EPS), Ultra-Accelerated Quantum Chemical Molecular Dynamics (UA-QCMD), Kinetic Monte Carlo (KMC), Computational Fluid Dynamics (CFD)
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0060/_article/-char/ja/

結晶軌道法によるDNAのHartree-Fock計算の試み [Published online J. Comput. Chem. Jpn., 15, 219-220, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 219-220, by J-STAGE]
<Title:> 結晶軌道法によるDNAのHartree-Fock計算の試み
<Author(s):> 寺前 裕之, 青木 百合子
<Corresponding author E-Mill:> teramae(at)gmail.com
<Abstract:> As an attempt at the electronic structure calculations of the B-type model-DNA, (poly-(guanine) poly-(cytosine)) model polymers is performed by means of ab initio crystal orbital method adapting the screw axis-symmetry which results in great reduction of computational efforts. All sugar backbones and ions are included in the calculations. Energy band structures are calculated at 3-21G and 6-31G levels. The effective mass of hole shows a relatively large value while that of electron shows a smaller value which suggests electron conduction in the DNA backbones.
<Keywords:> Crystal orbital method, Screw-axis symmetry, B-type DNA, Parallel processing, Energy band structure
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0057/_article/-char/ja/

転がりにおける面との摩擦 [Published online J. Comput. Chem. Jpn., 15, 225-226, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 225-226, by J-STAGE]
<Title:> 転がりにおける面との摩擦
<Author(s):> 夏目 雄平
<Abstract:> The mechanism of rolling frictions of wheel is discussed in relation with movement of Reuleaux-pentagons. In fact, driving and braking processes lead us to the suggestion that hysteresis-energy loss model is naturally obtained. In addition to this, the combined model of hysteresis-energy loss and differential-slip mechanisms is proposed so as to promote the computational investigations for rolling frictions of wheel.
<Keywords:>
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0066/_article/-char/ja/

分子動力学法を用いた4-n-alkyl-4′-cyanobiphenyl (nCB)の熱伝導率シミュレーション [Published online J. Comput. Chem. Jpn., 15, 217-218, by J-STAGE]

[Published online Journal of Computer Chemistry, Japan Vol.15, 217-218, by J-STAGE]
<Title:> 分子動力学法を用いた4-n-alkyl-4′-cyanobiphenyl (nCB) の熱伝導率シミュレーション
<Author(s):> 高橋 祐貴, 石川 良, 大木 竜勝, 川内 進
<Corresponding author E-Mill:> skawauch(at)polymer.titech.ac.jp
<Abstract:> Thermal conductivity of 4-n-alkyl-4′-cyanobiphenyl (nCB) simulated by using molecular dynamics method. We modified the dihedral angle parameter and the LJ parameters of the original AMBER Force Field for nCB. The dihedral angle parameter was corrected by using quantum chemical calculation, and the LJ parameters were fitted to reproduce the experimental data. Thermal conductivity was calculated by Green-Kubo Method. MD calculation using the corrected force field gave good thermal conductivity close to experimental value and successfully reproduced the anisotropy of thermal conductivity in the liquid crystal phase.
<Keywords:> Thermal conductivity, Molecular Dynamics, Corrected force field, Anisotropy of thermal conductivity, Green-Kubo Method
<URL:> https://www.jstage.jst.go.jp/article/jccj/15/6/15_2016-0054/_article/-char/ja/